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Traffic Modeling for
Wireless IP

Traffic modeling becomes increasingly important in future quality of service (QoS) wire-
less IP (Internet protocol) networks. It is indeed vitally important for any communication
network to perform efficiently and to utilize the network resources more appropriately.
The topic has been researched for many years in voice-based telephony networks but
after the invention of the packet-switched networks and increasing the data applications
over the Internet, it was not followed up accordingly. In continuation of our discussion in
the previous chapter on QoS, we need to either design a perfect network by employing
appropriate data traffic models or we need to rely on traffic management techniques, in
order to provide QoS in data networks.

In this chapter, we look at the first approach, that is, to find appropriate traffic models
for the future data networks and the wireless IP. In the next chapter, we will look at the
traffic management techniques for wireless IP networks. We will describe several different
characteristics of traffic in data networks and formulize the major models available. The
discussion provided in this chapter will be sufficient for any researcher who is looking
for a fundamental understanding and knowledge to start working on the important topic
of traffic modeling in wired and wireless data networks.

6.1 INTRODUCTION

Telecommunication networks are evolving and they include more nonvoice traffic gener-
ated from Internet applications and other digital data sources. In a voice-centric network
like most of the current telephony networks, the traditional traffic models, listed in
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Table 6.1 Traditional traffic models for voice-centric networks

Probability distribution Usage
Poisson Packet and connection arrival
Exponential Packet interarrival

Table 6.1, could be sufficient to evaluate the network performance, such as queuning
performance and congestion control as well as the designing process,

In addition, the well-known Erlang formulas have provided universal solutions to net-
work problems for both wireline and wireless circuit-switched networks. Reference [1] is
a classic reference for traffic modeling in cellular networks.

6.1.1 Emerging trend of the next-generation mobile traffic

Today, Global System for Mobile communications (GSM) is the most widely used second-
generation digital cellular system. Although the current GSM is optimized for voice
communications, the next-generation cellular mobile, that is, the third-generation mobile,
will accommodate voice, data, and multimedia technology with a vast range of applica-
tions as illustrated in Figure 6.1. The main focus of the next-generation mobile will be
anywhere-anytime communications for both voice and other types of data transmission.
Internet and multimedia traffic can be characterized by frequent transitions belween
active and inactive states, often called ON/OFF patrerns. The ON period represents the
file-downloading time and the OFF period is the user-reading time. If the present circuit-
switched technique is used, the bandwidth of the dedicated circuit is wasted during the
OFF period. However, the packet-switched technology allows higher data transmission
rates and uses the bandwidth only within the ON period [2]. For the emerging future
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Figure 6.1 Emerging trends in the third-generation mobile traffic
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network traffic, the current circuit-switched technique and the Erlang formulas are no
longer appropriate to use [3,4].

6.1.2 Importance of traffic modeling

Although traffic modeling can be a time-consuming and resource-intensive process, it is
the basic tool for performance evaluation and resource provisioning [4-10]. Figure 6.2
shows how traffic models are used as the input for analytical and simulation studies of
telecommunication networks [4].

Traffic models have a lot of important roles in planning and managing new and existing
networks. Let us name a few of their important roles.

e They support efficient network-dimensioning procedures and traffic management
functions.

# They assist in characterizing and modeling traffic behavior that is used for access-
ing (QoS.

® They help estimate the resource utilization in a network environment.

6.1.3 Traffic modeling criteria

A good traffic model should be able to characterize the network dynamics with an accept-
able level of accuracy. By doing so, it has to be [11]

L. General enough to provide a good approximation to the field data. It means that the
proposed model should rely on a few parameters that can readily and reliably be
estimated rom measured observation,

2. Simple enough to obtain analytically tractable results for performance evalvation. It
means that the proposed model should be simple in terms of

» mathematical analysis,
® programming,
e computing (i.e. fast simulation and numerical analysis).

Traffic models
* Network + Traffic
charactarization maeasuraments
* Metwork design « Metwork
= Algorithm performance
measuremenis

Telecommunications

Metwork resources & networks

equipment user traffic

Figure 6.2 The role of traffic modeling in telecommunication networks
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Table 6.2 Three important traffic characteristics in traffic modeling

Traffic characteristics Deseription

Queuing performance Buller size and paramelers

Marginal distribution Statistical multiplexing and source raffic control
Autocorrelation Prediction of quewing behavior

From an analytical point of view, a good traffic model should be able to capture three of the
most important traffic characteristics of the measured data, that is, quening performance,
marginal distribution, and autocorrelation. These are described in Table 6.2.

The suitability of a traffic miodel is primarily determined by its ability to predict the
quening performance. More refined models predict a better marginal distribution and auto-
correlation of the modeled traffic but usually at the cost of increase in model complexity.

6.2 POISSON AND MARKOV MODELS

Because of their theoretical simplicity, the Poisson and Markov Modulated Poisson Pro-
cess (MMPP) are used extensively for packet-switched data networks. Although the
self-similar nature of today’s data traffic was noticed for some time, many practitioners
ignored this phenomenon because of

1. inadequate physical explanation for the observed self-similar nature of measured traffic
from today's packet networks,

2, lack of studies on its impact on the network, and protocol design and performance
analysis.

Since the traditional traffic models are inadequate to capture today’s network charac-
teristics, the packet-switched data traffic models have been developed on the basis of
measurements from actual data networks. However, their availability in wireless network
maodeling is still to be proven [12].

6.2.1 Limitation of the Poisson and Markov traffic models

When the traditional traffic modeling such as Poisson or MMPP is used in the framework
of the ON/OFF pattern, the ON or OFF periods display either exponential or geometric
distribution, that is, finite variance distribution. The traffic displays memory-less property,
meaning that its correlation is of short-range-dependence (SRD). The aggregale traffic
behaves like white noise and fails to capture any of the three most important traffic
characteristics described in Table 6.2,

Recent traffic analyses on network traffic such as local area network (LAN) and wide
area network (WAN) and application traffie such as World Wide Web (WWW) and vari-
able bit rate (VBR) video traffic have revealed the prevalence of a long-range dependence
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(LRD) on packel-switched networks [5-7,9,11,13—18]. This means that there is a high
correlation of traffic over many timescales. Although the significance of traffic correla-
tion on queuing performance was recognized, most of the studies were concentrated on
SRD [5]. Table 6.3 shows some of the fundamental differences between traditional voice
traffic and today’s and emerging high-speed data traffic.

Apart from the differences described in Table 6.3, the next-generation mobile networks
will offer many different applications and each application will have different QoS require-
ments, For example, in circuit-switched wireless networks, the network performance will
be measured in terms of (1) continuous coverage and (2) high reliability of handovers,
The failure of one of these two conditions results in dropped calls or inadequate QoS.
However, in packet-switched networks, the nature of service is discontinuous and there
is no strict restriction on delay requirements. Instead, packet error rates and loss rates are
more important parameters to consider. Therefore, the network performance criteria have
to be changed as well. So far, most of the work on self-similar traffic is concentrated on
its impact on queuing performance [5,15,19-22]. However, its impact on admission and
congestion control is rather neglected. Therefore, a close examination of these impacts
on end-to-end QoS requirements of voice, data, and multimedia applications will be the
focus of the next chapter on traffic management.

6.2.2 The need for new traffic models

Emerging high-speed network traffic displays new characteristics. Traditional traffic mod-
els fail to capture these characteristics and lead to an overly optimistic estimation of
performance. The unexpected poor performance of asynchronous transfer mode (ATM)
switches in the field may indicate that traditional traffic models are inappropriate for use
in data-centric networks. With today's phenomenal increase in data traffic, it is essential

Table 6.3 Comparison between traditional and emerging network traffic

Traditional traffic Emerging network traffic

ON/OFF Exponential or geometric

waffic distribution distribution (i.e. finite HcireiNiieg driion e,
variance distribution) infinite variance distribution)

Burstiness Mulliplexing traffic streams Aggregate self-similar traffic
tend to produce “smoathed streams can actually intensify
out’ aggregate traffic with burstiness
reduced burstiness

Aggregate traffic Gaussian LRD

Queving performance Queue length decreases Bulfer gain is linear so that
exponentially wilh increase queue length decreases
in buffer size linearly

Admission control Extensive studies are done Subject of fulure studies

Congestion control Extensive studies are done Subject of future studies
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to understand the characteristics of data traffic in order to utilize the network resources
and to optimize the network performance.

In theory, the traffic should become more and more like the Gaussian processes in
the future [5,23]. The prevalent effect of a single application will be less significant in
terms of aggregate traffic. However, at the moment the network traffic is not anywhere
close to the Gaussian model. Over the past 20 years, numerous attempts were made to
find an Erlang-like formula for the traditional telephony for broadband (i.e. multimedia)
traffic [23]. However, so far, there is no such model that fits the role. Presently, the
level of aggregation is not sufficient enough for the bad behavior of one traffic stream to
dominate the overall network traffic characteristics. The need for good traffic models are
more acule than ever.

6.3 CHARACTERISTICS OF THE EMERGING TRAFFICS

It is reasonable to assume that (1) session arrival is Poisson with an arrival rate of A sessions
per second and (2) the duration of each session is exponentially distributed. However, the
packet-arrival patterns within the session depend on the application. Recent analysis on
traffic measurements on packet-data networks such as LAN and WAN, show heavy-tailed,
self-similar, fractal, and LRD characteristics. In this section, we have defined the terms that
are frequently used 1o describe today’s traffic and the emerging networks traffic.

6.3.1 Heavy-tailed

A distribution is heavy-tailed if the asymptotic shape of the distribution follows 2 power-
law so that

PIX>=x]=Zx" assx—so0,0<cp=<2 (6.1)

The parameter ¢ describes the heaviness of the tail distribution so that as & gets smaller
the distribution becomes more heavy-tailed. Figure 6.3 shows the effect of & in the heavy-
tailed distribution. The asymptotic (i.e. tail) shape of the distribution is hyperbolic and
converges slower than the exponential distribution. It appears to have a thicker tail distri-
bution, and is therefore called a fat-tailed or heavy-tailed distribution. The heavy-tailed
nature of the distribution comes from the fact that the larger portion of the probability
mass may be present in the tail of the distribution. It differs from exponential, geometric,
and Poisson distributions so that

o Il @ = 2, the distribution has an infinite variance,
o If @ < |, the distribution has an infinite mean.

Most commonly used examples of the heavy-tailed distributions are the Pareto and
Weibull distribution.
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PLX > 2] ~ (1/x)8

Figure 6.3 The effect of « in a heavy-tailed distribution

6.3.1.1 Pareto distribution

It is the simplest heavy-tailed distribution. Its distribution is hyperbolic over its entire
range. Mathematically, the cumulative distribution function of the Pareto distribution,
Fa(x), is

P

R =1-(3) 62)
X

where & is the minimum value of x and w is the heaviness of the tail distribution.
Figure 6.4 shows the effect of & in the Pareto distribution. k is simply the scaling factor
and does not affect the tail distribution. The effect of « is shown in Figure 6.3,

6.3.1.2 Weibull distribution
The cumulative distribution function of the Weibull distribution, F,,(x), is
Fu(x) = 1 — g~ /a’ (6.3)

Both parameters @ and b affect the tail distribution. However, the heavy-tailed nature of
the Weibull distribution is more sensitive to the value of b, Figure 6.5 shows the effect
of @ and b in the Weibull distribution.

Usually, a heavy-tailed distribution describes traffic processes such as packet inter-
arrival times and burst length. If traffic is heavy-tailed, it is highly correlated, It means
that the arrival rate is higher than the service rate. In the context of traffic modeling, it is
often used to describe the burst individual source traffic distributions.
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Figure 6.4 The effect of k in the Pareto distribution with (a) k = 1; and {b) k =10

6.3.2 Self-similar

It is a scaling behavior of the finite dimensional distributions of a continuous- or discrete-
time process. Traffic is selfsimilar if the aggregate traffic

# exhibits time correlation over a wide range of timescales, and
e can be characterized by a single parameter called Hurst parameter (H).

6.3.2.1 Self-similarity indicator

The Hurst parameter, H, is the measure of the degree of self-similarity of the aggregate
traffic stream. As H — |, the degree of self-similarity increases. The Hurst parameter



6.2 CHARACTERISTICS OF THE EMERGING TRAFFICS 157

0.45 v '

v

t

5
oo 0
— g=15

s Exponential | |

— b 3

PX > x] ~ expl-{x/a)]"

P[X > x] - exp[—{x/a)]®

Figure 6.5 The effect of (a) a; and (b) b in Weibull distribution

can be measured in various ways. However, three of the most common methods are
as follows:

1. Variance versus Time: If traffic is self-similar, then its slope —§f < —1. For some
historical reason, the relationship between the slope, —f, and H is

H=I_E (6.4)

Therefore, H can be calculated by obtaining the slope of variance versus time graph.
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2. R/S plot: Let |Y, };=l be an empirical time series with sample mean ¥i(n) and sample
variance 5%(n). The rescaled adjusted range, R/ statistic, is given by Ri(n)/S(n) with

R{n}:max[ZLI[Y}- -Yn):l<k= n] —min[ELI(Y; —Ym):1<k=<n

(6.5)

Rin} H
E = arg _
[S{n}:| s for large n (6.6)

Normally, the H value of a self-similar process is 0.5 = # = 1 whereas that of the SRD
process is H = 0.5.

3. Whittle Estimator: It provides the confidence interval but it requires some form
of underlying stochastic process, which is a drawback. The most commonly used
forms are

o fractional Gaussian noise (FGN) with 0.5 <= H < 1,
o fractional ARIMA (p,d, g) with 0 = d = 1/2 (to be discussed shortly).

6.3.2.2 Description of self-similarity

o Lxactly self-similar (H = 1) A distribution appears indistinguishable from one another
but distinctively different from pure noise.

o Asymprotically self-similar (0.5 =< H = 1.0): A distribution converges to a time senes
with nondegenerate autocorrelation structure.

s Second-order self-similar: For stationary sequences, whose aggregate processes possess
the same nondegenerate autocorrelation functions as the original process.

This characteristic is often explained in terms of the high variability of individual cos-
nections that contributes to the aggregated traffic. Self-similarity is often used to describe
individual application traffic.

6.3.3 Fractal

A fractal process is characterized by significant long bursts. These bursts are caused
by downloading large files such as video files, long periods of high levels of VEE
video, or intensive bursts of database activities. It is another term to describe the sei
similarity of traffic. Current WAN traffic is often described as multifractal. Multifraces
traffic can be considered as an extension of self-similar traffic, by considering properties
higher than second-order characteristics so that it can capture more irregularities in e
distribution.
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6.3.4 Long-range-dependence

A process with LRD has an autocorrelation function, r(k), of:
r(k}%k'a ask ——> 00 whereO =< pf <1, and ¥ r(k) — oo (6.7)

In other words, the autocorrelation function (1) decays hyperbolically and (2) is non-
summable. For the conventional short-range dependence (SRIY) process, an autocorrelation
function decays exponentially. It is often used to describe the tail-end behavior of the auto-
correlation function of a stationary time series. In traffic modeling, LRD is often used to
describe the aggregate traffic such as WAN, whereas self-similarity is usuvally used in the
context of LAN or individual application traffic,

Table 6.4 summarizes some typical traffic types and associated (raffic distributions
and models.

6.3.5 Suitability of self-similar and long-range dependence

After studying the terms that describe current and future network traffic characteristics, the
next appropriate question would be “why does the traffic display these characteristics?" In
References [9, 14, 24], it is pointed out that the heavy-tailed nature of ON and OFF periods
has more to do with basic properties of information storage and processing. It is not a result
of the network protocols or user preference. Therefore, changes in protocol processing and
document display cannot remove the self-similarity of the web traffic. Also, it is shown
that both the user's thinking or reading times and the file-size distributions are strongly
heavy-tailed. In addition, Internet provides explicit support for multimedia formats; the
file distribution is strongly heavy-tailed. Figure 6.6 shows the effect of multimedia files
such as image and aundio files on the file distribution. The values of o« are taken from
Reference [14].

Often, self-similarity in today's network traffic is explained in terms of application
traffic. The burst data traffic and VBR real-time applications such as compressed video

Table 6.4 Traffic distributions and frequently used traffic models

Traffic types Traffic distribution Frequently used
traffic models
Individual source traflic Heavy-tailed ON/OFF e Pareto
distribution o Weibull
Individual application Self-similar e FGN
traffic or LAN « FARIMA
Aggregate traffic LRI Multifractial + Fractional Brownian
motion (FEm) model
s M/Gloo

» M/Pareto
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Figure 6.6 The effect of multimedia files on file distributions

and audio display (1) a certain degree of correlation between arrivals and (2) slow LRD
in time. As a result, the aggregate traffic is self-similar. Or, it could be the high variety
of individual connections (i.e. infinite variance) that contributes to the aggregate traffic.

Overall, the factors, apart from application traffic itself, that contribute to the self-similar
nature and the LRD behavior of the emerging network traffic are

s user behavior—user-reading time and user-induced delay,
e file-size distribution,
e set of files available in the server.

Table 6.5 summarizes different traffic distributions and their associated applications,

Table 6.5 Traffic distributions and suitable applications

Traffic distribution Description
Poisson Session arrival process
Exponential Session duration
Heavy-tailed Suitable for burst individual source trallic with ONJOFF
patterns
o Pareto File-transfer time distribution, user-reading (thinking)

time, user-induced delay
« Weibull Machine-processing time, file downloading time
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6.4 SELF-SIMILAR AND LRD TRAFFIC MODELS

As a conclusion, on the basis of the previous section, it appears that self-similar and LRD
models are the most suitable models for future data networks, including the wireless IP.
In this section, we explore these models further.

6.4.1 Traditional traffic models

Because of the long history of traditional telephony networks, there are plenty of traf-
fic models available for voice-centric network traffic. The network traffic characteristics
have been identified and extensive studies have already been completed to optimize the
network resources.

6.4.1.1 Poisson

It is the oldest and one of the most elegant traffic models. The Poisson maodel is suitable

for traffic applications that physically comprise a large number of independent traffic

streams. Mathematically, the Poisson process is expressed as
()"

Pin)= —e

(6.8)
!

where A is the arrival rate per session and n is the number of individual traffic streams.
The interarrival times [A,] are exponentially distributed with

P{A, <t} =1—e™ (6.9)

The Poisson model has some elegant analytical properties:

s The superposition of the independent Poisson process is a new Poisson process.
o Ii is a memory-less process,

However, the model fails to capture the autocorrelation of traffic as it vanishes identically
for all nonzero lags. It is expected that burst data traffic will dominate the future network
traffic. In that case, it is essential to capture the autocorrelated nature of the traffic for
predicting the performance. In high-speed data networks, the Poisson process is no longer
appropriate and has lost its merits.

6.4.1.2 Markov

Unlike the Poisson model, the Markov model introduces some dependency into the ran-
dom sequence [A,); therefore, it caplure the traffic ‘burstiness’. The process {A,} is
defined in terms of a Markov transition matrix P = [py;]. The Markov property intro-
duces dependency into inter-arrival separation, batch sizes, and successive workloads.
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However, any traffic modeling requires a multistate Markov and each state adds several
free parameters. In practice, it is time consuming (o estimate these parameters.

6.4.1.3 Markov modulated

It introduces an explicit notion of state into the description of a traffic stream. Let M =
(M {r)}“ﬁ be a continuous-time Markov process with state space [1,2, ..., m). Assuming
M is in state k, the probability law for traffic arrivals is completely determined by & and
this holds for every 1 <k < m. When M undergoes a transition to state j, then a new
probability law for arrivils takes effect for the duration of state j, and so on. The most
commonly used form of the Markov modulated process is the MMPP,

MMPP combines the simplicity of the modulating Markov process with that of the
maodulated Poisson process. It is particularly suitable for use in a single traffic source
with a variable rate, by quantifying the rate into a finite number of rates so that each rate
gives rise o a state in some Markov-modulating process. For example, a simple two-state
MMPPF maodel has been widely used to model voice traffic sources.

6.4.2 Current and future models
6.4.2.1 Fluid traffic model

In this model, traffic is considered as volume and is characterized by a flow rate. It is
suitable to model the traffic where the individual traffic unit is insignificant, for example,
individual cells in broadband ISDN (B-ISDN) ATM networks. Here, larger traffic units
provide a simpler and better analysis of the network performance as well as saving,
simulation, and computing resources, Fluid models are suitable for modeling burst traffic
with ON/OFF patierns. For analytical tractability, the following assumptions are made:

e The ON-state traffic arrives deterministically at a constant rate A,
o ‘Traffic is switched off during the OFF state.
e The ON and OFF periods are exponentially distributed and mutually independent,

6.4.2.2 Self-similar models

Here, we describe three commonly used models for the self-similar process.

o Fractional ARIMA (FARIMA): For LRD modeling, FARIMA is one of the most com-
monly used models for the self-similar process. The main advantage of this model is
that it can model both LRD and SRD processes simultaneously. In addition, FARIMA
provides quick simulation. It is particularly useful to simulate the queuning performance
of SRD and LRD traffic simultaneously. By changing the parameters that affect the
degree of SRD and LRD, we can identify the parameters that are more or less sensitive
to SRD or LRD.
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s Fractional Gaussian Noise (FGN ). Together with the FARIMA, FGN is another most
frequently used stochastic model for self-similar traffic modeling. It is suitable for burst
data and multimedia application traffic modeling with a prevalence of LRD. It provides
a good estimation of queuing performance for aggregate traffic.

s Transform-Expand-Sample (TES ): This is able to capture both the marginal distributions
and the autocorrelations of the measured traffic. A good transform expand sample (TES)
model should satisfy the following three requirements simultaneously:

1. The histogram of measured traffic matches the model’s marginal distribution.

2. The model’s autocorrelations should match the measured traffic up to a reason-
able lag.

3. Good correspondence exists between the sample paths of the simulated and the
measured data,

6.4.2.3 Long-range-dependence (LRD) models
Here, we describe three commonly used models for the LRD process.

o Fractional Brownian Motion (FBm): 1t is a Gaussian process with a mean zero and
stationary increments. Let us define By as an FBm and its covariance function as:

By (s)Br(t) = (1/2{s*™ + 2% — |5 — 121y (6.10)
Its increments
Gji=By(j)—Bp(j—1) j=12,... (6.11)
are called fractional Gaussian noise and
Gu()Gu(j+k)y = HQH - DK 2 ssk —> o0 (6.12)

The power-law decay of the covariance characterizes long-range-dependence. As H
becomes larger, the decay becomes slower.

o M/G/oo: The M/Gloo model is chosen to generate self-similar arrivals. The advantage of
this model is that it introduces multifractal behavior at small/medium timescales without
affecting the asymptotic self-similarity. It is considered to be more conservative than
FBm as it predicts a stricter quening performance.

o M/Pareto: The M/Pareto model is a particular type of the general M/Gfoo model.
It is simple and particularly useful to estimate the queuing performance of a variety
of realistic multimedia traffic streams. Another benefit of using M/Pareto is that the
superposition of multiple independent M/Pareto processes is an M/Pareto process with
a combined Poisson rate, A. With an appropriate choice of A, the M/Pareto process
provides an accurate prediction of the queuing performance. Some of drawbacks are
(1) there is no systematic way of calculating the appropriate value of & and (2) it is
difficult to estimate the Hurst parameter, H, from a finite data set.

Table 6.6 summarizes characteristics of different traffic models.
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6.4.3 Traffic models for the Internet applications

In Reference [18], four types of traffic profiles have been proposed, on the basis of the
most frequently used wireless applications, e-mail, WWW, file transfer protocol (FTP),
and telemetry traffic. Table 6.7 summarizes data traffic models and their respective numer-
ical parameters. We will discuss the first three traffic types in this section, For the readers
who are interested in other literature on the Internet data traffic model, Reference [24]
and the references given therein provide some mathematical representations.

6.4.3.1 E-mail traffic

E-mail traffic models are summarized in Table 6.8. The message is downloaded from the
mail server to the mobile terminal during the ON period. The length of the ON period
depends on the message size and the instantaneous throughput available to the user. The
OFF period is the reading time taken by the user.

The OFF period distribution of the e-mail is Pareto. The minimum OFF period (i.e.
k) is the minimum time required by a user 1o read an e-mail message. From the given
parameters, the e-mail OFF time distributions are illustrated in Figure 6.7 for k. = 30 s
and 60 s, Comparing the OFF time distributions of k, = 30 s and k. = 60 s, it is reason-
able to assume that k. = 30 s, since most users will finish reading an e-mail message in
2 to 3 min, provided there is no attachment.

6.4.3.2 WWW traffic

Typical WWW traffic models are summarized in Table 6.9. For the WWW traffic, the
ON and OFF patterns are still clear but we have also started ohserving active and inac-
tive OFF patterns (see Figure 6.8). As in e-mail, the file is transferred on the downlink
during the ON period and its period depends on the file size, a, and the available down-
link bandwidth.

The ON period distribution is based on the file size. Here, ky, is the minimum file size
in bytes during the ON period. However, the Inactive OFF period distribution is based
on the user reading time; therefore, k,, is the minimum time required by the user to read
a web page.

Active OFF time

By definition, active OFF represents the time needed to process transmitted files such as
interpret, format, and display a document compaonent. Generally, if the OFF time is less
than 1 s, it is assumed to be the machine-processing and display time for data items that are
retrieved as part of a multipart document. However, some embedded components require
more than 30 s to interpret, format, and display. As a rule, if the OFF time is greater than
30 s, it is considered as user-initiated delay (i.e. reading time). Therefore, the minimum
value of k, for the inactive OFF-time distribution should be at least 30 s (i.e. ki, = 30 s).
Figure 6.9 shows the active OFF time distribution based on the parameters given in
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Table 6.8 E-mail traffic models
E-mail Traffic models

ON period Weibull distribution
OFF period Parcto distribution

40 80 80 100 120 140 160 180
Time (s)
(a)

100 150 200 250 300
Time (s)
i)

Figure 6.7 E-mail OFF time Pareto distribution with (a) k. = 30 s; (b) k. =60 5
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Table 6.8 WWW traffic models

WWW Tralfic models
ON Pareto distribution
Active OFF Weibull distribution
Inactive OFF Parcto distribution

WE/A e,
e

Active OFF

Figure 6.8 Active and inactive OFF patterns in WWW traffic

0.9 1 - i h
0.8
L B—8 g-146, b=0.328[18]
0.6 Je—e a=15, b=05[16] -
05F
04}
03}
02t
0.1

Time (s}

Figure 6.9 WWW active OFF period with different parameters

References [16,18]. The active OFF-time distribution provided by Reference [16] is more
heavy-tailed. If the web page is text-intensive, the parameters provided by Reference [18]
are maore suitable. However, today, there is a lot of image, audio, and even video files in the
weh page; therefore, the parameters provided by Reference [16] seem more appropriate
to use.

Inactive OFF time

The inactive OFF time is the user reading time. According to References [14,18], the
ON period is more heavy-tailed (i.e. smaller ) than the OFF period. However, in Refer-
ence [16], it is the inactive OFF time that contributes more to the heavy-tailed behavior.
Assuming that the minimum reading time of a web page (i.e. k) is 30 5, the parameters
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given in References [13,17] provide a reasonable inactive OFF-time distribution. Refer-
ence [16] has also assumed that k), = 30 s and the OFF-time distribution assumed there is
more appropriate for the text-intensive web pages, where it takes more time for a user to
finish reading. However, k;, = 1 s is too short a time and provides an inappropriate OFF-
time distribution. This is shown in Figure 6.10. For the sake of comparison, Figure 6.11
also illustrates the WWW ON period file size distribution for different k.

Web file size

In Reference [14], it is interesting to notice that the web file system prefers documents
in the 256—512 byte range, while with the UNIX file system the file sizes are more
commonly in the 1000-4000 byte range. Also, UNIX files show heavier tail distribution

049
08r
[ A
0.6+
0.5
04+
0.3t
02t
0.1

0 10 20 30 40 50 60 70 80 90 100
WWW Inactive OFF (s)
(a)

0.8
0.8 i
o7}t O T .. S e -
0.6 : S R ;
0.5 L. L ! o——p am 1.5

044 1 o . +a=058

0.3 A
£/

D2HE/
0.1 g

4ID EIJ au 1450 1:.11} 140 160 180 200 220 240
WAWW Inactive OFF (g)
(1)

Figure 6.10 WWW inactive OFF-time distribution with (a) k,, =1 s;and (b) k,, =30s
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2000 4000 6000 8000 10000 12000 14000
File sizes (bytes)
(a)

0 Y% : . : : :
] 500 1000 1500 2000 2500 3000
File sizes (bytes)
{b)

Figure 6.11 WWW ON period file size distribution with (a) k, = 1000 bytes; and (b) k., =
100 bytes

Table 6.10 File types and their sizes

in bytes

File sizes (bytes) File types
<1000 Text
1000-30000 Image
30000300 0000 Audio

300000 Video
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(i.e. smaller ) than web files despite the emphasis on multimedia in the web. The web file
systems are currently more biased toward small files than UNIX systems. Some typical
Internet file sizes are listed in Table 6.10.

Table 6.11 provides a comparison between the traffic models and numerical parameters
proposed for WWW applications in References [14,16,18].

6.4.3.3 FTP traffic

The behavior of the FTP sessions is similar to e-mail but with larger file sizes and longer
ON periods. A summary of appropriate FTP traffic models is given in Table 6.12.

In case of an FTP session, the OFF periods may be shorter than the ON periods. The
OFF-periods distribution rather depends on the user-induced delay such as user think
time and typing speed. As pointed out in Table 6.5, the Weibull distribution is more
appropriate to deseribe the machine-processing, interpret, and display times. Therefore,
the Pareto distribution will provide a better fit for the OFF-period distribution.

6.5 SHORT-RANGE AND LONG-RANGE
DEPENDENCE MODELS

Recent studies on high-speed traffic such as Ethernet packets show not only LRD but
also strong short-range dependence (SRD) as well. As the network gets larger and carries
traffic from more independent sources, future traffic will be more and more Gaussian-like.
However, the current network traffic is not anywhere near Gaussian, Therefore, in order
to capture the current and emerging network traffic characteristics, it is necessary that the
traffic models are able to represent both LRD and SRD simultaneously.

6.5.1 Self-similar traffic models

Both FGN and Fractional ARIMA (FARIMA) are the most commonly used stochastic
self-similar traffic models. However, FARIMA is the preferred model as it can be used 1o
maodel both SRD and LRD simultancously. In addition, although there is no extensive work
done in TES modeling, it can also be used to model both SRD and LRD and promises to
give the three important traffic characteristics deseribed previously in Table 6.2. On the
basis of these conclusions, the most preferable self-similar traffic models are FARIMA,
TES, and FGN in that order. Table 6.13 illustrates this conclusion.

6.5.2 Long-range-dependence traffic models

Although it is hard to determine the sufficient aggregation level where short-range depen-
dence (SRD) effects can be ignored, if the traffic is aggregated enough, SRD would be
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Table 6.12 FTP traffic models
FTP Traffic model

ON period Pareto distribution
OFF period Weibull distribution

Table 613 Self-similar traffic modeling preferences

Preference  Traffic models Traffic types Applications
| FARIMA . Self-similar traffic with both » Eihernet traffic modeling
SRD and LRD s LAN
» Cooperate network
2 TES Self-similar traffic with both e LAN
SRD and LRD o Cooperate network traffic
muodeling
3 FGN Sell-similar traffic with LRD o WAN
only

Table 6.14 Traffic models for LRD modeling

Preference  Traffic models Traffic types Applications
| M/Pareto e LRD & Multimedia trallic
e Broadband traffic in general
2 M/Gfoo e Multifractal LRI traffic  « WAN

averaged out. We only need to consider the LRD properties. On the basis of the mathe-
matical and computational complexity, the M/Pareto and M/G/oo models are appropriate
for LRD modeling, as shown in Table 6.14.

A traffic model should match most of the measured traffic characteristics. However, a
model is a ol for decision-making. Its quality depends on the quality of the decisions it
leads to rather than on its closeness to physical reality [12].

6.6 SUMMARY AND CONCLUSIONS

In this chapter, we have examined the most suitable traffic models for the communication
networks, with an emphasis on current and future data networks and wireless IP networks.
The future networks will have the Internet applications as their primary sources of traf-
fic and, similar to the requirement of an appropriate model in the traditional telephony
networks, we will need to come up with respective traffic models for the future wireless
data network, in order to design them more appropriately.

Modeling of data traffic loads, however, is not an easy task and not comparable with the
voice-centric telephony networks. There are many different multimedia traffics coming
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from current and future applications, and having a single model to illustrate the charac-
teristics of all these traffic would be a complex research task in the years to come.

Considering the exponential increase in the traffic load of the data networks and the
necessity of designing these systems by using precise traffic models, there are not many
available models. This could be because of the complexity involved in finding these
models or the lack of feeling the requirement for such a traffic model at this time. Soon,
the wireless data technology will find the need to investigate more on this important issue,
the fundamentals of which we have described in this chapter. The materials presented here
can provide the required knowledge for the traffic engineering as well as for rescarchers
in the field. ;

When a good traffic model is not available during the design process of a communication
network or when applying an available traffic model, it makes the network design too
complicated, and we need to search for other alternatives. Traffic management techniques
are considered as appropriate partial replacements to precise traffic modeling, and we thus
discuss this topic in the following chapter.
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